Abstract

Densities, refractive indices, and viscosities of 1-amino-2-propanol (monoisopropanolamine (MIPA)) + 1-butanol and 1-amino-2-propanol + 2-butanol solutions are reported over the entire range of mole fractions and the temperature range from (288.15 to 333.15) K. The Redlich–Kister relation was used for correlation of measured results of excess molar volumes, viscosities, and refractive indices as a function of temperature and composition. Partial molar volumes at infinite dilution were determined from apparent molar volumes. Negative values for excess molar volumes, refractive indices, and viscosity deviations are observed over the entire composition range. The viscosities of 1-amino-2-propanol with 1-butanol and 1-amino-2-propanol with 2-butanol are well represented by an Arrhenius equation. Activation energies for viscous flows are determined by linearization of the Arrhenius equation, providing a clear explanation of the influence on hydrogen bonding. In order to confirm molecular interactions between compounds obtained by analysis of infinite dilution of solute, a FT-IR spectroscopy study was performed at T = 298.15 K. Interactional and structural effects were investigated through calculations of excess Gibbs free energy of activation of viscous flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call