Abstract
Matter of discussion in this Ph. D. thesis is SAR (Synthetic Aperture Radar) image denoising. Main elements of innovation are the introduction of SAR-BM3D, a denoising algorithm optimized for SAR data, and the introduction of a benchmark which enables the objective performance comparison of SAR denoising algorithms on simulated canonical SAR images. In the first part of the thesis, basic concepts on SAR images are introduced, with special emphasis on its peculiar multiplicative noise, called speckle. A description of key ideas and tools of denoising techniques known in literature then follows. After introducing the basic elements of SAR data processing, the main statistical features of SAR images are described, and it is clarified in which context the denoising techniques operate. Techniques are then classified as those that follow the homomorphic approach, where the multiplicative noise is turned into additive noise through a logarithmic transform, and those that take explicitly into account the multiplicative nature of noise. Afterwards, it is described how the introduction of the wavelet transform has brought new ideas into SAR image denoising and how the non-local filtering strategy, originally proposed in the AWGN field, has provided relevant results also in the application to SAR. In this context, the novel SAR-BM3D algorithm is introduced which, starting from key elements of wavelet-based and non-local filtering implemented in BM3D, optimizes the elaboration for SAR data, following a non-homomorphic approach. A very detailed experimental analysis on simulated SAR images, obtained as optical images corrupted by artificial speckle, has been performed: results proved the SAR-BM3D algorithm to outperform traditional approaches, both in terms of PSNR and visual inspection. Due to the well-known difficulties of evaluating the performance of denoising techniques on real SAR images, a workaround has been proposed. Rather than resorting to images corrupted by artificial speckle, a physical SAR simulator, SARAS (developed by the remote-sensing group of the Federico II University of Naples) has been used to generate a set of canonical benchmark SAR scenes. The main advantage of SARAS images is the availability of both the noisy and clean versions of the images, the latter acting as a reference to objectively evaluate the performances of different algorithms. We have shown in detail the procedure which leads to a definition of an objective criterion to compare results provided by different algorithms when working on real SAR images. For this purpose, different test cases have been selected and specific measures, suitable for the various scenes have been proposed for the characterization. At the end of the thesis, open issues are pointed out and future research is outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.