Abstract
This work proposes an InGaN/GaN multiple-quantum-well flip-chip blue ultrathin side-emitting (USE) light-emitting diode (LED) and describes the sidewall light emission characteristics for the application of backlight units in display technology. The USE-LEDs are fabricated with top (ITO/distributed Bragg reflector) and bottom (Ag) mirrors that cause light emission from the four sidewalls in a lateral direction. The effect of light output power (LOP) on lateral direction is consistently investigated for improving the optoelectronic performances of USE-LEDs. Initially, the reference USE-LED suffers from very low LOP because of poor light extraction efficiency (LEE). Therefore, the LEE is improved by fabricating ZnO nanorods at each sidewall through hydrothermal method. The effects of ZnO nanorod lengths and diameters on LOP are systematically investigated for optimizing the dimensions of ZnO nanorods. The optimized ZnO nanorods improve the LEE of USE-LED, which thus results in increasing the LOP > 80% compared to the reference LED. In addition, the light-tools simulator is also used for elucidating the increase in LEE of ZnO nanorods USE-LED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.