Abstract

Electronic flicker noise is recognized as the most abundant noise in electronic conductors, either as an unwanted contribution or as a source of information on electron transport mechanisms and material properties. This noise is typically observed when a voltage difference is applied across a conductor or current is flowing through it. Here, we identify an unknown type of electronic flicker noise that is found when a temperature difference is applied across a nanoscale conductor in the absence of a net charge current or voltage bias. The revealed delta-T flicker noise is demonstrated in molecular junctions and characterized using quantum transport theory. This noise is expected to arise in nanoscale electronic conductors subjected to unintentional temperature gradients, where it can be a performance-limiting factor. On the positive side, delta-T flicker noise can detect temperature differences across a large variety of nanoscale conductors, down to atomic-scale junctions with no special setup requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.