Abstract

Molecular junctions, where single molecules are bound to metal or semiconductor electrodes, represent a unique architecture to investigate molecules in a distinct nonequilibrium situation and, in a broader context, to study basic mechanisms of charge and energy transport in a many-body quantum system at the nanoscale. Experimental studies of molecular junctions have revealed a wealth of interesting transport phenomena, the understanding of which necessitates theoretical modeling. The accurate theoretical description of quantum transport in molecular junctions is challenging because it requires methods that are capable to describe the electronic structure and dynamics of molecules in a condensed phase environment out of equilibrium, in some cases with strong electron-electron and/or electronic-vibrational interaction. This perspective discusses recent progress in the theory and simulation of quantum transport in molecular junctions. Furthermore, challenges are identified, which appear crucial to achieve a comprehensive and quantitative understanding of transport in these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.