Abstract
Post Hurricane Abnormal Water Level (PHAWL) poses a persistent inundation threat to coastal communities, yet unresolved knowledge gaps exist regarding its spatiotemporal impacts and causal mechanisms. Using a high-resolution coastal model with a set of observations, we find that the PHAWLs are up to 50 cm higher than the normal water levels for several weeks and cause delayed inundations around residential areas of the U.S. Southeast Coast (USSC). Numerical experiments reveal that while atmospheric forcing modulates the coastal PHAWLs, ocean dynamics primarily driven by the Gulf Stream control the mean component and duration of the shelf-scale PHAWLs. Because of the large spatial impact of the post-hurricane oceanic forcing, the coastal hazards are not limited to a direct hit from a hurricane but can be detected throughout the USSC where the oceanic processes reach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.