Abstract
ABSTRACTDehydrooligomers of ferulic acid cross‐link polysaccharides such as arabinoxylans and pectic polysaccharides in cereal and certain pseudocereal grains, affecting physiological effects of these fiber components and their physicochemical properties during food processing. An HPLC‐MS method for the analysis of eight diferulic acids and five triferulic acids in low‐lignin samples such as cereal grains and pseudocereals was developed and validated. This method was applied to the analysis of ester‐linked diferulates and triferulates in maize, popcorn, wheat, rye, oats, barley, buckwheat, and amaranth, giving a complete profile of this set of diferulates and triferulates in cereals and pseudocereals. Triferulic acid contents of the cereal flours are roughly 1/10 of the diferulic acid contents, ranging between 23 (oats) and 161 (popcorn) μg/g of flour, with lower amounts for the pseudocereal flours (1–3 μg/g of flour). Dominating trimers are either the 5‐5/8‐O‐4‐ and/or the 8‐O‐4/8‐O‐4‐regioisomers with lower proportions of 8‐8cyclic/8‐O‐4‐, 8‐5noncyclic/8‐O‐4‐, and 8‐5noncyclic/5‐5‐triferulic acids. A unique diferulate pattern was found for buckwheat, with more than 90% of the dimers being 8‐5‐coupled. Amaranth contains an unusually high proportion of 8‐8cyclic‐diferulate, with 27% of the total dimers, whereas oats and barley show comparably high proportions (23%) of the 8‐8tetrahydrofuran diferulate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have