Abstract

AimThe World Health Organisation (WHO) magnesium (Mg) estimated average requirement (EAR) is not adjusted for rise in human body weight (BW) and neglects body Mg stores depletion. Cereal grain food processing results in Mg loss and reduces dietary Mg intake which mainly originates from cereals. Here we reassess human dietary Mg deficiency risk considering actual human BWs and modern levels of cereal grain food processing.MethodsHuman Mg requirement was adjusted for rising BW plus low and high estimates to prevent body Mg store depletion. Magnesium supply was recalculated for cereal grain (maize, millet, rice, oats, sorghum, and wheat) food processing of none, 25%, 50%, 75% and 100%. Resulting Mg deficiency risks in 1992 and 2011 were calculated at national, regional, continental and global scales using the EAR cut-point method.ResultsGlobally, human Mg requirement increased by 4–118% under the three Mg requirement scenarios compared to the WHO EARs set in 1998. However, dietary Mg supply declined with increased cereal grain food processing. At 100% cereal grain processing, dietary Mg supply was reduced by 56% in 1992 and 51% in 2011. Global human Mg deficiency risk reached 62% in 2011 with 100% cereal grain processing and largest EAR set to prevent depletion of body Mg stores and corrected for BW rises.ConclusionGlobal dietary Mg Supply adequately meets human Mg requirement given the global obesity epidemic. But, Mg intakes preventing body Mg store depletion plus high Mg losses due to cereal grain food processing start to show noteworthy risks of potential Mg deficit in populations consuming diets with >50% cereal grain food processing. These findings have ramifications for the global spread of the major chronic, non-communicable diseases associated with nutritional Mg deficiencies such as cardiovascular diseases and type 2 diabetes.

Highlights

  • Magnesium (Mg) is an essential nutrient for plants as well as animals

  • Globally, human Mg requirement increased by 4–118% under the three Mg requirement scenarios compared to the World Health Organisation (WHO) Estimated Average Requirement (EAR) set in 1998

  • Human Mg EARs for each age/gender group were corrected for body weight (BW) using calculated mean global human body weights for 1992 and 2011 (Scenario 1) plus estimates to ensure prevention of body Mg store depletion based on published human Mg balance data (Scenarios 2 and 3)

Read more

Summary

Introduction

Magnesium (Mg) is an essential nutrient for plants as well as animals. In humans, a low dietary Mg intake is associated with cardiovascular disease and its risk factors including hypertension as well as metabolic syndrome and type 2 diabetes among other chronic diseases (Ma et al 1995; Volpe 2012; Zhang et al 2012; Del Gobbo et al 2013; Kass and Sullivan 2016; Zhang et al 2016; Verma and Garg 2017; Rosique-Esteban et al 2018). Plant source foods are the source of most human Mg intake, especially cereal grains, green vegetables, nuts and pulses (Nielsen 2015), with grains supplying the vast majority of dietary Mg to humans (EFSA Panel on Dietetic Products Nutrition and Allergies 2015; Kumssa et al 2015). When first published in 1998, these EARs were set to estimate the daily Mg intake level that can prevent Mg deficit in 50% of healthy individuals of a given gender/age group. These EARs are set to a standard reference body weight for each gender/age group, but recent analysis of human Mg balance study data (Nielsen 2019) has shown that Mg requirement increases with body weight. The existing WHO and FAO Mg EARs, set for standard reference body weights, are low considering the rise in obesity and overweight status in both children and adults

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call