Abstract

AbstractWe study the degree distribution of the greatest common divisor of two or more random polynomials over a finite field đ”œq. We provide estimates for several parameters like number of distinct common irreducible factors, number of irreducible factors counting repetitions, and total degree of the gcd of two or more polynomials. We show that the limiting distribution of a random variable counting the total degree of the gcd is geometric and that the distributions of random variables counting the number of common factors (with and without repetitions) are very close to Poisson distributions when q is large. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.