Abstract
This paper presents a new numerical algorithm for the computation of the greatest common divisor (GCD) of several polynomials, based on system-theoretic properties. The specific algorithm, characterizes the GCD as the output decoupling zero polynomial of an appropriate linear system associated with the given polynomial set. The computation of the GCD is thus reduced to specifying a nonzero entry of a vector forming the compound matrix of a matrix pencil directly produced from the associated linear system. A detailed description of the implementation of the algorithm is presented and analytical proofs of its stability are also developed. The MATLAB code of the algorithm is also described in the appendix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.