Abstract

The eutrophication of aquaculture water bodies seriously restricts the healthy development of the aquaculture industry. Among them, microcystins are particularly harmful. Therefore, the development of technologies for degrading microcystins is of great significance for maintaining the healthy development of the aquaculture industry. The feasibility and mechanism of removing microcystins-LR by dielectric barrier discharge (DBD) plasma were studied. DBD discharge power of 49.6 W and a treatment time of 40 min were selected as the more suitable DBD parameters, resulting in microcystin-LR removal efficiency of 90.4%. Meanwhile, the effects of initial microcystin-LR concentration, initial pH value, turbidity, anions on the degradation effect of microcystin-LR were investigated. The removal efficiency of microcystin-LR decreased with the increase of initial microcystin-LR concentration and turbidity. The degradation efficiency of microcystin-LR at pH 4.5 and 6.5 is significantly higher than that at pH 8.5 and 3.5. HCO3− can inhibit the removal efficiency of microcystin-LR. Furthermore, five intermediates products (m/z = 1029.5, 835.3, 829.3, 815.4, 642.1) were identified in this study, and the toxicity analysis of these degradation intermediates indicated that DBD treatment can reduce the toxicity of microcystin-LR. e-aq, •OH, H2O2, and O3 have been shown to play a major role in the degradation of microcystin-LR, and the contribution ranking of these active species is e-aq > •OH > H2O2 > O3. The application of DBD plasma technology in microcystin-LR removal and detoxification has certain development potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.