Abstract
The gamma irradiation-induced degradation of sulfamethazine (SMT) in aqueous solution in the presence of hydrogen peroxide (H2O2) was investigated. The initial SMT concentration was 20mg/L and it was irradiated in the presence of extra H2O2 with initial concentration of 0, 10 and 30mg/L. The results showed that gamma irradiation was effective for removing SMT in aqueous solution and its degradation conformed to the pseudo first-order kinetics under the applied conditions. When initial H2O2 concentration was in the range of 0–30mg/L, higher concentration of H2O2 was more effective for the decomposition and mineralization of SMT. However, the removal of total organic carbon (TOC) was not as effective as that of SMT. Total nitrogen (TN) was not removed even at absorbed dose of 5kGy, which was highest dose applied in this study. Major decomposition products of SMT, including degradation intermediates, organic acids and some inorganic ions were detected by high performance liquid chromatography (HPLC) and ion chromatography (IC). Sulfate (SO42−), formic acid (HCOOH), acetic acid (CH3COOH), 4-aminophenol, 4-nitrophenol were identified in the irradiated solutions. Possible pathways for SMT decomposition by gamma irradiation in aqueous solution were proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.