Abstract

Bioorthogonal catalysis using transition-metal catalysts (TMCs) provides a toolkit for the in situ generation of imaging and therapeutic agents in biological environments. Integrating TMCs with nanomaterials mimics key properties of natural enzymes, providing bioorthogonal "nanozymes". ZnS nanoparticles provide a platform for bioorthogonal nanozymes using ruthenium catalysts embedded in self-assembled monolayers on the particle surface. These nanozymes uncage allylated profluorophores and prodrugs. The ZnS core combines the non-toxicity and degradability with the enhancement of Ru catalysis through the release of thiolate surface ligands that accelerate the rate-determining step in the Ru-mediated deallylation catalytic cycle. The maximum rate of reaction (Vmax) increases ∼2.5-fold as compared to the non-degradable gold nanoparticle analogue. The therapeutic potential of these bioorthogonal nanozymes is demonstrated by activating a chemotherapy drug from an inactive prodrug with efficient killing of cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.