Abstract

Back Propagation (BP) neural network can learn and store a large number of input-output model nonlinear relationships with simple structure. Niche ant colony algorithm (NACA) combines the ant colony algorithm (ACA) with the niche technology in order to add its local search ability to ACA with preserving the intelligent search ability and robustness of ACA. To optimize predicting model establishment of the dam monitoring data, NACA and BP neural network modeling method are combined to establish a prediction model of horizontal displacement monitoring data. The traditional BP neural network prediction model is established to make a comparison with the NACA. The results show that NACA-BP neural network method can speed up the convergence rate of BP neural network and enhance local search ability and prediction accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.