Abstract

ObjectiveTo determine the specific lung elastance (SEL) in anesthetized dogs and to evaluate the efficacy of a SEL-based recruiting airway pressure (RPaw) at improving global and regional lung aeration. Study designRetrospective and prospective clinical study. AnimalsA total of 28 adult dogs were included in the retrospective study and six adult dogs in the prospective study. MethodsRetrospective study: SEL and SEL-based RPaw were determined using previously published data. In mechanically ventilated dogs undergoing thoracic computed tomography (CT), SEL was calculated as ΔPL/(VT/EELV), where ΔPL is the driving transpulmonary pressure, VT is the tidal volume and EELV is the end-expiratory lung volume. The ratio of lung to respiratory system elastance (EL/Ers) was determined. SEL and EL/Ers were used to calculate the SEL-based RPaw. Prospective study: dogs underwent thoracic CT at end-expiration and at end-inspiration using the SEL-based RPaw, and global and regional aeration was determined. For analysis of regional aeration, lungs were divided into cranial, intermediate and caudal regions. Regional compliance was also calculated. A p value <0.05 was considered significant. ResultsThe SEL and EL/Ers were 12.7 ± 3.1 cmH2O and 0.54 ± 0.07, respectively. The SEL-based RPaw was 29.1 ± 7.6 cmH2O. In the prospective study, the RPaw was 28.2 ± 1.3 cmH2O. During RPaw, hyperinflation increased (p = 0.0003) whereas poorly aerated (p < 0.0001) and nonaerated (p = 0.01) tissue decreased. Normally aerated tissue did not change (p = 0.265). Regional compliance was higher in the intermediate (p = 0.0003) and caudal (p = 0.034) regions compared with the cranial region. Aeration did not differ between regions (p > 0.05). Conclusions and clinical relevanceAn SEL-based RPaw reduces poorly and nonaerated lung tissue in anesthetized dogs. In nonsurgical anesthetized dogs, an RPaw near 30 cmH2O is effective at improving lung aeration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.