Abstract

BackgroundPercutaneous dilatational tracheotomy (PDT) may lead to transient impairment of pulmonary function due to suboptimal ventilation, loss of positive end-expiratory pressure (PEEP) and repetitive suction maneuvers during the procedure. Possible changes in regional lung aeration were investigated using electrical impedance tomography (EIT), an increasingly implied instrument for bedside monitoring of pulmonary aeration.MethodsWith local ethics committee approval, after obtaining written informed consent 29 patients scheduled for elective PDT under bronchoscopic control were studied during mechanical ventilation in supine position. Anesthetized patients were monitored with a 16-electrode EIT monitor for 2 min at four time points: (a) before and (b) after initiation of neuromuscular blockade (NMB), (c) after dilatational tracheostomy (PDT) and (d) after a standardized recruitment maneuver (RM) following surgery, respectively. Possible changes in lung aeration were detected by changes in end-expiratory lung impedance (Δ EELI). Global and regional ventilation was characterized by analysis of tidal impedance variation.ResultsWhile NMB had no detectable effect on EELI, PDT led to significantly reduced EELI in dorsal lung regions as compared to baseline, suggesting reduced regional aeration. This effect could be reversed by a standardized RM. Mean delta EELI from baseline (SE) was: NMB − 47 ± 62; PDT − 490 ± 180; RM − 89 ± 176, values shown as arbitrary units (a.u.). Analysis of regional tidal impedance variation, a robust measure of regional ventilation, did not show significant changes in ventilation distribution.ConclusionThough changes of EELI might suggest temporary loss of aeration in dorsal lung regions, PDT does not lead to significant changes in either regional ventilation distribution or oxygenation.

Highlights

  • Percutaneous dilatational tracheotomy (PDT) is a standard procedure in critical care patients requiring long-term ventilator support [1, 2]

  • We prospectively investigated changes in global and regional lung aeration during a standardized tracheotomy procedure using electrical impedance tomography (EIT)

  • In the example patient shown in the top panel, a marked decrease in end-expiratory lung impedance (EELI) is seen in the third examination phase right after PDT

Read more

Summary

Introduction

Percutaneous dilatational tracheotomy (PDT) is a standard procedure in critical care patients requiring long-term ventilator support [1, 2]. The intervention is accompanied by repetitive suction maneuvers, application of high oxygen fractions, reduced ventilation and loss of positive end-expiratory pressure (PEEP) [3]. These procedural factors might cause formation of atelectasis, possibly leading to impaired respiratory function immediately thereafter [4]. Percutaneous dilatational tracheotomy (PDT) may lead to transient impairment of pulmonary function due to suboptimal ventilation, loss of positive end-expiratory pressure (PEEP) and repetitive suction maneuvers during the procedure. Possible changes in regional lung aeration were investigated using electrical impedance tomography (EIT), an increasingly implied instrument for bedside monitoring of pulmonary aeration

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call