Abstract
An experimental procedure is proposed to perform measurements of differential cross sections for vector boson production which can be compared to fixed-order QCD predictions with improved accuracy. The procedure relies on applying theoretical acceptance corrections computed as a function of the transverse momentum of the W/Z boson, p_T, to the experimental measurement, rather than comparing data directly against fiducial fixed-order predictions. It is demonstrated that, contrary to standard fiducial computations, these acceptance factors vary little at low p_T, so they can be reliably computed using fixed-order perturbation theory. An example analysis is performed using the ATLAS measurement of the Z-boson production cross section at center-of-mass energy of 8 TeV. The resulting full phase space measurement of the cross section differential in the boson rapidity is compared to theoretical predictions computed with next-to-next-to leading-order accuracy in QCD. Further extensions of the approach which include different types of measurements and improved theoretical predictions are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.