Abstract
We perform a detailed phenomenological study of high-energy neutrino deep inelastic scattering (DIS) focused on LHC far-forward experiments such as FASERν\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ u $$\\end{document} and SND@LHC. To this aim, we parametrise the neutrino fluxes reaching these LHC far-forward experiments in terms of ‘neutrino PDFs’ encoding their energy and rapidity dependence by means of the LHAPDF framework. We integrate these neutrino PDFs in the recently developed POWHEG-BOX-RES implementation of neutrino-induced DIS to produce predictions accurate at next-to-leading order (NLO) in the QCD coupling matched to parton showers (PS) with Pythia8. We present NLO+PS predictions for final-state distributions within the acceptance for FASERν\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ u $$\\end{document} and SND@LHC as well as for two experiments of the proposed Forward Physics Facility (FPF), FASERν\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ u $$\\end{document}2 and FLArE. We quantify the impact of NLO QCD corrections, of the parton showering and hadronisation settings in Pythia8, of the QED shower, and of the incoming neutrino flavour for the description of these observables, and compare our predictions with the GENIE neutrino event generator. Our work demonstrates the relevance of modern higher-order event generators to achieve the key scientific targets of the LHC neutrino experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.