Abstract

Effects of temperature and dosage on the evolution of extended defects during annealing of MeV ion-implanted Czochralski (CZ) p-type (001) silicon have been studied using transmission electron microcopy. Excess interstitials generated in a 1 1015 cm−2/1.5 MeV B+ implanted Si have been found to transform into extended interstitial {311} defects upon rapid thermal annealing at 800°C for 15 sec. During prolonged furnace annealing at 960°C for 1 h, some of the {311} defects grow longer at the expense of the smaller ones, and the average width of the defects seems to decrease at the same time. Formation of stable dislocation loops appears to occur only above a certain threshold annealing temperature (∼1000°C). The leakage current in diodes fabricated on 1.5 MeV B+ implanted wafers was found to be higher for a dosage of 1 1014cm−2 and less, as compared to those fabricated with a dosage of 5 1014 cm−2 and more. The difference in the observed leakage current has been attributed to the presence of dislocations in the active device region of the wafers that were implanted with the lower dosage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call