Abstract

Clustering and annihilation of atomic-scale bond defects dominate nucleation and evolution of submicron-scale extended interstitial defects in irradiated silicon. Molecular dynamics simulations reveal the role of the bond defect in the thermal evolution of extended defects and identify the atomistic evolution paths. Accurate density functional theory calculations establish formation energies, activation barriers, and electronic structures of the bond defect and its clusters, and extended interstitial defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.