Abstract

Owing to their intrinsic and pronounced charge carrier transport when facing the formidable challenge of inhibiting severe surface charge recombination, one-dimensional (1D) CdS nanostructures are promising for advancing high-yield hydrogen production. We herein demonstrate an efficient strategy of boosting interfacial carrier separation by heterostructuring 1D CdS with defective WS2. This process yields solid covalent interfaces for high flux carrier transfer that differ distinctively from those reported structures with physical contacts. As a nonnoble cocatalyst, WS2 can accept photogenerated electrons from CdS, and the sulfur vacancies existing at its edges can effectively trap electrons as active sites for H2 evolution. Moreover, due to its strong negative property, the H+ from the aqueous solution can gather around WS2. WS2 possesses a lower reaction barrier than CdS, which expedites the kinetic process for the reaction. The optimized sample exhibits a high photocatalytic H2 evolution rate of 183.4 µmol/h (10 mg photocatalyst), which is as far as we know among the top in the records for CdS-based photocatalysts. We believe this present work will be inspiring in addressing the interfacial charge carrier transfer by constructing covalent heterointerfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call