Abstract

Simultaneously utilizing photogenerated electrons and holes in one photocatalytic system to synthesize value-added chemicals and clean hydrogen (H2) energy meets the development requirements of green chemistry. Herein, we report a binary material of CdS/BiVO4 combining one-dimensional (1D) CdS nanorods (NRs) with two-dimensional (2D) BiVO4 nanosheets (NSs) constructed through a facile electrostatic self-assembly procedure for the selectively photocatalytic oxidation of aromatic alcohols integrated with H2 production, which exhibits significantly enhanced photocatalytic performance. Within 2 h, the conversion of aromatic alcohols over CdS/BiVO4-25 was approximately 9-fold and 40-fold higher than that over pure CdS and BiVO4, respectively. The remarkably improved photoactivity of CdS/BiVO4 hybrids is mainly ascribed to the Z-scheme charge separation mechanism in the 1D/2D heterostructure derived from the interface contact between CdS and BiVO4, which not only facilitates the separation and transfer of charge carriers, but also maintains the strong reducibility of photogenerated electrons and strong oxidizability of photogenerated holes. It is anticipated that this work will further stimulate interest in the rational design of 1D/2D Z-scheme heterostructure photocatalysts for the selective fine chemical synthesis integrated with H2 evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.