Abstract
The purpose of this paper is to present a methodology for the evaluation of the Defect Level in an IC design environment. The methodology is based on the extension of Williams-Brown formula to nonequiprobable faults, which are collected from the IC layout, using the information on a typical IC process line defect statistics. The concept of weighted fault coverage is introduced, and the Defect Level (DL) evaluated for the Poisson and the negative binomial yield models. It is shown that DL depends on the critical areas associated with undetected faults, and their correspondent defect densities. Simulation results are presented, which highlight that the classic single Line Stuck-At (LSA) fault coverage is a unreliable metric of test quality. Moreover, results show that the efficiency of a given set of test patterns strongly depends on the physical design and defect statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.