Abstract
Single crystalline Fe-doped hexagonal BaTiO${}_{3}$ samples with varying oxygen content are created by specifically intended post-growth annealing treatments, in order to check the influence of defects on the unusual high temperature ferromagnetism observed in this system. The various defects have been shown to play a crucial role in dilute magnetic systems and therefore, it is important to carry out this check for the Fe-doped BaTiO${}_{3}$ system also, in which unusual ferromagnetism was reported even in its bulk single crystalline form. The x-ray diffraction and dielectric studies carried out here have confirmed that the Fe doping of Ti is intrinsic, while the high resolution transmission electron microscopy (HRTEM) and x-ray photoemission spectroscopy (XPS) studies proved the absence of unwanted magnetic metal clusters in the sample. The transport studies show that the oxygen concentrations could be varied substantially by the thermal treatments. Finally, magnetization measurements on the samples demonstrated that ferromagnetism is stronger in samples with higher oxygen deficiency, which could interestingly be retreated under high oxygen atmosphere and reversibly be taken back to a lower magnetic state. The vacancy-induced ferromagnetism is further confirmed by EPR measurements, which is consistent with earlier studies and, consequently, put the doped BaTiO${}_{3}$ in the list of true dilute magnetic oxide (DMO) systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.