Abstract

A high density of intragrain defects in solid-phase crystallised Si thin films results in poor electronic properties and impedes their use for thin-film solar cell or thin-film transistor applications. This paper demonstrates that a high-power line-focus diode laser can eliminate intragrain defects (microtwins and dislocations) in polycrystalline Si films while maintaining the smooth defect-free surface. Improved electronic properties of ultra-thin polycrystalline Si thin films are thus achieved. To alleviate crack formation during diode laser annealing, a rapid-thermal pre-treatment at 800°C for 60s is introduced since it effectively relieves the tensile stress in the films and thus generates a more stable precursor material for subsequent laser annealing. The film thickness plays an important role in diode laser annealing. The films thinner than 100nm show relatively smaller improvement due to the limited absorption of 808nm laser radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call