Abstract
The detection of abnormalities is a very challenging problem in computer vision. In our proposed method designed for detecting the defect of pattern texture analysis. The preprocessing input image features are extracted using the Gray level co-occurrence matrix (GLCM) and Gray level run-length matrix (GLRLM). Then the extracted features are fed to the input of classification stage. Here the classification is done by improved support vector machine (ISVM) based on kernel analysis. Based on the improved support vector machine the features are classified. Final stage is segmentation; here the classified features are segmented using the modified fuzzy c means algorithm (MFCM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.