Abstract
Texture defect detection can be defined as the process of determining the location and size of the collection pixels in a textured image which deviate in their intensity values or spatial in compression to a background texture. The detection of abnormalities is a very challenging problem in computer vision. In our proposed method we have designed a method for detecting the defect of pattern texture analysis. Initially, features are extracted from the input image using the grey level co-occurrence matrix (GLCM) and grey level run-length matrix (GLRLM). Then the extracted features are fed to the input of classification stage. Here the classification is done by improved support vector machine (ISVM). The proposed pattern analysis showed that the traditional support vector machine is improved by means of kernel methods. In the final stage, the classified features are segmented using the modified fuzzy c means algorithm (MFCM).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have