Abstract
Electricity load forecasting for buildings and campuses is becoming increasingly important as the penetration of distributed energy resources (DERs) grows. Efficient operation and dispatch of DERs require reasonably accurate predictions of future energy consumption in order to conduct near-real-time optimized dispatch of on-site generation and storage assets. Electric utilities have traditionally performed load forecasting for load pockets spanning large geographic areas, and therefore, forecasting has not been a common practice by buildings and campus operators. Given the growing trends of research and prototyping in the grid-interactive efficient buildings domain, characteristics beyond simple algorithm forecast accuracy are important in determining the algorithm’s true utility for smart buildings. Other characteristics include the overall design of the deployed architecture and the operational efficiency of the forecasting system. In this work, we present a deep-learning-based load forecasting system that predicts the building load at 1-hour intervals for 18 hours in the future. We also discuss challenges associated with the real-time deployment of such systems as well as the research opportunities presented by a fully functional forecasting system that has been developed within the National Renewable Energy Laboratory’s Intelligent Campus program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.