Abstract

Free surfaces in glassy polymer films are known to induce surface mobile layers with enhanced dynamics. Using molecular dynamics simulations of a bead-spring model, we study a wide variety of layer-resolved structural and dynamical properties of polymer films equilibrated at a low temperature. Surface enhancement on thermally induced particle hopping rates is found to terminate abruptly only about 5 particle diameters from the free surface. In contrast, enhancement on the net motions of particles measured at longer time scales penetrates at least 2 particle diameters deeper. The diverse penetration depths show the existence of a peculiar sublayer, referred to as the inner-surface layer, in which surface enhanced mobility is not caused by more frequent particle hops but instead by a reduced dynamic heterogeneity associated with diminished hopping anti-correlations. Confinement effects of the free surface thus provide a unique mechanism for varying the dynamic heterogeneity and hopping correlations while keeping the hopping rate constant. Our results highlight the importance of correlations among elementary motions to glassy slowdown and suggest that dynamic facilitation is mediated via perturbations to the correlations rather than the rate of elementary motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.