Abstract

Ensuring the classification of water bodies suitable for fish habitat is essential for animal preservation and commercial fish farming. However, existing supervised machine learning models for predicting water quality lack specificity regarding fish survival. This study addresses this limitation and presents a novel model for forecasting fish viability in open aquaculture ecosystems. The proposed model combines reinforcement learning through Q-learning and deep feed-forward neural networks, enabling it to capture intricate patterns and relationships in complex aquatic environments. Moreover, the model's reinforcement learning capability reduces the reliance on labeled data and offers potential for continuous improvement over time. By accurately classifying water bodies based on fish suitability, the proposed model provides valuable insights for sustainable aquaculture management and environmental conservation. Experimental results show a significantly improved accuracy of 96% for the proposed DQN-based model, outperforming existing Gaussian Naive Bayes (78%), Random Forest (86%), and K-Nearest Neighbors (92%) classifiers on the same dataset. These findings highlight the effectiveness of the proposed approach in forecasting fish viability and its potential to address the limitations of existing models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call