Abstract

Traditionally, precision medicine involves classifying patients to identify subpopulations that respond favorably to specific therapeutics. We pose precision medicine as a dynamic feedback control problem, where treatment administered to a patient is guided by measurements taken during the course of treatment. We consider sepsis, a life-threatening condition in which dysregulation of the immune system causes tissue damage. We leverage an existing simulation of the innate immune response to infection and apply deep reinforcement learning (DRL) to discover an adaptive personalized treatment policy that specifies effective multicytokine therapy to simulated sepsis patients based on systemic measurements. The learned policy achieves a dramatic reduction in mortality rate over a set of 500 simulated patients relative to standalone antibiotic therapy. Advantages of our approach are threefold: (1) the use of simulation allows exploring therapeutic strategies beyond clinical practice and available data, (2) advances in DRL accommodate learning complex therapeutic strategies for complex biological systems, and (3) optimized treatments respond to a patient's individual disease progression over time, therefore, capturing both differences across patients and the inherent randomness of disease progression within a single patient. We hope that this work motivates both considering adaptive personalized multicytokine mediation therapy for sepsis and exploiting simulation with DRL for precision medicine more broadly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.