Abstract

Dementia is a brain disorder that causes loss of memory leading to disruption in the normal course of life of an individual. It is emerging as a global health problem in adults with age 65 years or above. Early diagnosis of dementia has gone forth as a key research zone with the aim of early identification for hindering the advancement. Deep learning provides path-breaking applications in medical imaging. This study provides a detailed summary of different implementation approaches of deep learning for detecting the disease. Transfer learning for multi-class classification has also been explored for detecting dementia. The pre-trained convolutional network, AlexNet is used with 3 optimizers, SGDM, ADAM, RMSProp. A Dataset of 60 MRI images is taken from the OASIS dataset. Accuracy of the methods has been compared and the best parameters including classifier, learning rate, and a batch size of the model have been identified. SGDM classifier with a learning rate 10-4 and a mini-batch size of 10 have shown the best performance in a reasonable time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.