Abstract
Purpose: We aimed to evaluate whether the deep-learning (DL) accelerated diffusion weighted image (DWI) is clinically feasible for evaluating patients with acute neurologic symptoms, regarding its shorter study time and acceptable image quality. Materials and methods: In this retrospective study, brain images obtained at DWI with a b-value of 0 s/mm2 and DWI with a b-value of 1000 s/mm2 (DWI 1000) from 321 consecutive patients with acute stroke-like symptom were reconstructed with and without DL algorithm. We compare the diagnostic performance between DL-DWI and conventional DWI for detecting brain lesions, including acute infarction. We assessed the diagnostic accuracy of conventional DWI and DL-DWI and compared the results. Qualitative analysis based on image quality was assessed and compared using a five-point visual scoring system. Apparent diffusion coefficients (ADCs) from DWI with and without DL were also compared. Results: The mean acquisition time for the DL-DWI (49 s) was significantly shorter (P < 0.001) than conventional DWI (165 s). Both DWI with and without DL showed similar performance in diagnosing brain lesions especially sensitivity (98.8% in both DWI and DL-DWI) and specificity (99.5% in both DWI and DL-DWI). Overall image quality, gray-white matter and deep gray matter differentiation of two sequences were similar. DL DWI showed more artifacts than DWI. Lesion conspicuity, especially smaller than 5 mm, was better with DL DWI than conventional DWI (p = 0.03). ADC values of white matter, deep gray matter, and pons with DL were lower than conventional DWI. Conclusions: Compared to conventional DWI, DL-DWI achieved comparable image quality and brain lesion visualization for acute neurological symptoms, with a significantly shorter scan time.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.