Abstract
It is generally accepted that a weakening of the North Atlantic thermohaline circulation caused the Younger Dryas cooling. Although the role of seasonality was emphasized previously, this aspect is rarely considered yet, and it remains elusive how this impacted hydroclimate during winters and summers across Central Europe. Here, we coupled biomarker-based δ18O and δ2H from Bergsee in southern Germany to reconstruct deuterium excess as a proxy for evaporation history from the Bølling-Allerød to the Preboreal. We compared this dataset with other biomarker isotope records in Central Europe. They are all lacking a strong isotopic depletion during the Younger Dryas, which is best explained by the summer sensitivity of the biomarker proxies: As Younger Dryas summers were relatively warm, there is an absence of the strong winter cooling signals recorded in annual water isotope records like Greenland or Lake Steißlingen. Lake evaporation at Bergsee together with other paleohydrological reconstructions draw a coherent picture of the Late Glacial hydroclimate, with strong evidence for warm and dry Younger Dryas summers. Rather than a southward shift of the Westerlies during winter, we suggest that a recently proposed feedback mechanism between North Atlantic sea ice extend, strong winter cooling and summer atmospheric blocking serves as a suitable explanation for summer dryness. Additional confidence to the robustness of these biomarker records is provided by the overall agreement of paleohydrological fluctuations during the Preboreal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.