Abstract
We aimed to compare the radiation dose and image quality of a low-dose abdominal computed tomography (CT) protocol reconstructed with deep learning reconstruction (DLR) with those of a routine-dose protocol reconstructed with hybrid-iterative reconstruction. This retrospective study enrolled 71 patients [61 men; average age, 71.9 years; mean body mass index (BMI), 24.3 kg/m2] who underwent both low-dose abdominal CT with DLR [advanced intelligent clear-IQ engine (AiCE)] and routine-dose abdominal CT with hybrid-iterative reconstruction [adaptive iterative dose reduction 3D (AIDR 3D)]. Radiation dose parameters included volume CT dose index (CTDIvol), effective dose (ED), and size-specific dose estimate (SSDE). Mean image noise and contrast-to-noise ratio (CNR) were calculated. Image noise was measured in the hepatic parenchyma and bilateral erector spinae muscles. Moreover, subjective assessment of perceived image quality and diagnostic acceptability was performed. The low-dose protocol helped reduce the CTDIvol by 44.3%, ED by 43.7%, and SSDE by 44.9%. Moreover, the noise was significantly lower and CNR significantly higher with the low-dose protocol than with the normal-dose protocol (P<0.001). In the subjective assessment of image quality, there was no significant difference between the protocols with regard to image noise. Overall, AiCE was superior to AIDR 3D in terms of diagnostic acceptability (P=0.001). The use of AiCE can reduce overall radiation dose by more than 40% without loss of image quality compared to routine-dose abdominal CT with AIDR 3D.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have