Abstract

The purpose of this study is to compare radiation dose and image quality of abdominopelvic CT studies reconstructed with iterative and conventional techniques. This retrospective study enrolled 99 patients who underwent abdominopelvic CT examinations with the portal venous phase images reconstructed with both filtered back projection and Adaptive Iterative Dose Reduction 3D (AIDR 3D) at different time points. Subjective assessment of image quality was performed by two radiologists who scored axial images for overall quality, sharpness, noise, and acceptability in a blinded fashion. The SD of the mean attenuation of the liver, aorta, and paraspinal muscle (as a measurement of image noise) and contrast-to-noise and signal-to-noise ratios for liver and aorta were used as objective parameters of image quality. Radiation dose parameters included CT dose index volume (CTDIvol), dose-length product, effective dose (ED), and size-specific dose estimate (SSDE). Results were compared for different body mass index (BMI; weight in kilograms divided by the square of height in meters) categories. Paired t test and McNemar paired tests for noninferiority were used, with p < 0.05 considered statistically significant. We obtained a 62.5% mean reduction in CTDIvol, a 58% mean reduction in ED, and a 63% mean reduction in SSDE when AIDR 3D was used (p < 0.001). Subjective parameters of image quality were considered noninferior for AIDR 3D studies compared with filtered back projection (p < 0.001), except for the sharpness of images of patients with BMI 20-24.9. Variable results were found regarding objective assessment of image quality. AIDR 3D allowed a significant reduction in radiation dose of abdominopelvic CT examinations without a loss of image quality in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call