Abstract

The pricing behavior of agricultural processing firms in input markets has large impacts on farmers’ and processors’ prosperity as well as the overall market structure. Despite analytical approaches to food processors’ pricing in agricultural input markets, the need for models to represent complex market features is urgent. Agent-based models (ABMs) serve as computational laboratories to understand complex markets emerging from autonomously interacting agents. Yet, individual agents within ABMs must be equipped with intelligent learning algorithms. In this paper, we propose supervised and unsupervised learning agents to simulate the pricing behavior of firms in agricultural markets’ ABMs. Supervised learning firms are pre-trained to accurately best respond to their competitors and are deemed to result in the market Nash equilibria. Unsupervised learning firms play a course of pricing interaction with their competitors without any pre-knowledge but based on deep reinforcement learning. The simulation results show that unsupervised deep learning firms are capable of approximating the pricing equilibria obtained by the supervised firms in different spatial market settings. Optimal discriminatory and uniform delivery pricing emerges in agricultural input markets with the high and intermediary importance placed on space. Free on board pricing emerges in agricultural input markets with small importance placed on space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.