Abstract
Correctly identifying precious wood species is crucial for import and export trade and furniture material identification. This study utilizes nondestructive testing (Microscopic Computed Tomography, Micro-CT) to capture microscopic images of the transverse, radial, and tangential sections of 24 precious wood species, creating a comprehensive dataset. The SLConNet deep learning model is developed, enhancing recognition accuracy through multi-scale convolution and an improved residual block structure. The experiment results show that the classification accuracy of the transverse, radial and tangential sections is 98.72, 96.75 and 95.36 % respectively when the gain value is 0.8. The model outperforms traditional models like Alexnet, ResNet50, Inception-V3, and Xception. This research highlights the efficiency of nondestructive testing in obtaining a large number of microscopic wood images, compared to traditional anatomical methods. The SLConNet model showcases high accuracy in precision, recall, and specificity, suggesting its potential for widespread applications in wood classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.