Abstract
Ultrasonography is a practical imaging technique used in numerous health care settings. It is relatively inexpensive, portable, and safe, and it has dynamic capabilities that make it an invaluable tool for a wide variety of diagnostic and interventional studies. Recently, there has been a revolution in medical imaging using artificial intelligence (AI). A particularly potent form of AI is deep learning, in which the computer learns to recognize pixel or written data on its own without the selection of predetermined features, usually through a specific neural network architecture. Neural networks vary in architecture depending on their task, and key design considerations include the number of layers and complexity, data available, technical requirements, and domain knowledge. Deep learning models offer the potential for promising innovations to workflow, image quality, and vision tasks in sonography. However, there are key limitations and challenges in creating reliable and safe AI models for patients and clinicians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.