Abstract
Integrating a brain-computer interface into a lower-limb medical rehabilitation assistive device can enhance rehabilitation efficiency. The latest research in the field focuses on the decoding performance of different motions. However, the difference between muscle-caused primitive activation and mental intention-caused activation has not been fully investigated. Thus, our study tried to decouple these two kinds of cerebral activation using a general linear model (GLM). Nine healthy and right-handed subjects were recruited for a two-section experiment. They were asked to extend or flex their knees while seated in the first section of the experiment or standing in the second section. Functional near-infrared spectroscopy (fNIR) was adopted to monitor their hemodynamic changes. Two groups of paradigms (one for circle-wise analysis, the other for full-section analysis) were constructed from the experimental paradigm. Each group consisted of three (the first intention, the second intention, and the muscle activation). The constructed paradigms were fed to the Balloon model for six desired hemodynamic responses (dHRFs). The regressor of GLM consisted of three dHRFs and the corresponding motion artifacts and drifts. The simulated physiological noises were included in the structured background matrix. The results showed that all subjects had similar cerebral activation patterns for the intention to extend or flex knees. The activation during musclecaused activation was less intense than that caused by both intentions. This finding can help further research on more efficient motion intention detection and the possibility of multiple motions decoding.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have