Abstract

The problem of optimizing some given function over the efficient set is one of the most interesting and important concepts in multicriteria decision making. As the efficient set is in general nonconvex, even for the case of linear multicriteria programming problems, optimizing over the efficient set belongs to a typical problem class of multiextremal optimization problems, which can have local optima different from global optima. <br> In this article, we consider the case where the multicriteria programming problem is linear. Characterizing the set of efficient solutions by some constraint of 'reverse convex' type in the space of criteria, we formulate the problem of minimizing a function $f$ over the efficient set as a global optimization problem with a special structure. For the resulting problem, a decomposition branch and bound based algorithm is then proposed, in which the branching procedure is performed in the criteria space. Convergence properties of the algorithm are discussed, and preliminary computational results are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.