Abstract

The problem of minimizing a convex function over the difference of two convex sets is called ‘reverse convex program’. This is a typical problem in global optimization, in which local optima are in general different from global optima. Another typical example in global optimization is the optimization problem over the efficient set of a multiple criteria programming problem. In this article, we investigate some special cases of optimization problems over the efficient set, which can be transformed equivalently into reverse convex programs in the space of so-called extreme criteria of multiple criteria programming problems under consideration. A suitable algorithm of branch and bound type is then established for globally solving resulting problems. Preliminary computational results with the proposed algorithm are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.