Abstract
Virtual Reality (VR) has emerged as a novel paradigm for immersive applications in training, entertainment, rehabilitation, and other domains. In this paper, we investigate the automatic classification of mental workload from brain activity measured through functional near-infrared spectroscopy (fNIRS) in VR. We present results from a study which implements the established n-back task in an immersive visual scene, including physical interaction. Our results show that user workload can be detected from fNIRS signals in immersive VR tasks both person-dependently and -adaptively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.