Abstract

As a potential environmental obesogen, triclosan (TCS) carries inherent risks of inducing obesity and metabolic disorders. However, the underlying molecular mechanisms behind the lipid metabolism disorder induced by TCS have remained elusive. Through a fusion of transcriptomics and microRNA target prediction, we hypothesize that miR-101a as a responsive miRNA to TCS exposure in zebrafish, playing a central role in disturbing lipid homeostasis. As an evidence, TCS exposure triggers a reduction in miR-10a expression that accompanied by elevation of genes linked to regulation of lipid homeostasis. Through precision-controlled interventions involving miRNA expression modulation, we discovered that inhibition of miR-101a enhanced expression of its target genes implicated in lipid homeostasis, subsequently triggering excessive fat accumulation. Meanwhile, the overexpression of miR-101a acts as a protective mechanism, counteracting the lipid metabolism disorder induced by TCS in the larvae. Notably, the combination of short-chain fatty acids (SCFAs) emerged as a potential remedy to alleviate TCS-induced lipid accumulation partially by counteracting the decline in miR-101a expression induced by TCS. These revelations provide insight into a prospective molecular framework underlying TCS-triggered lipid metabolism disorders, thereby paving the way for pre-emptive strategies in combating the ramifications of TCS pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.