Abstract

Alzheimer's disease (AD), the leading cause of dementia worldwide, remains a challenge due to its complex origin and degenerative character. The need for accurate biomarkers and treatment targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal proteome methodology to examine the temporal development of molecular alterations in the cortex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease initiation and progression at one, three-, and six-weeks post-treatment. Week 1 revealed metabolic protein downregulation, such as Aldoa and Pgk1. Week 3 showed increased Synapsin-1, and week 6 showed cytoskeletal protein alterations like Vimentin. The biological pathways, upstream regulators, and functional effects of proteome alterations were dissected using advanced bioinformatics methods, including Ingenuity Pathway Analysis (IPA) and machine learning algorithms. We identified Mitochondrial Dysfunction, Synaptic Vesicle Pathway, and Neuroinflammation Signaling as disease-causing pathways. Huntington's Disease Signaling and Synaptogenesis Signaling were stimulated while Glutamate Receptor and Calcium Signaling were repressed. IPA also found molecular connections between PPARGC1B and AGT, which are involved in myelination and possible neoplastic processes, and MTOR and AR, which imply mechanistic involvements beyond neurodegeneration. These results help us comprehend AD's molecular foundation and demonstrate the promise of focused proteomic techniques to uncover new biomarkers and therapeutic targets for AD, enabling personalized medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.