Abstract
Decidability of the validity problem is established for a family of many-valued modal logics, notably Gödel modal logics, where propositional connectives are evaluated according to the order of values in a complete sublattice of the real unit interval [0,1], and box and diamond modalities are evaluated as infima and suprema over (many-valued) Kripke frames. If the sublattice is infinite and the language is sufficiently expressive, then the standard semantics for such a logic lacks the finite model property. It is shown here, however, that, given certain regularity conditions, the finite model property holds for a new semantics for the logic, providing a basis for establishing decidability and PSPACE-completeness. Similar results are also established for S5 logics that coincide with one-variable fragments of first-order many-valued logics. In particular, a first proof is given of the decidability and co-NP-completeness of validity in the one-variable fragment of first-order Gödel logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.