Abstract

Our interest in this paper are semantic tableau approaches closely related to bottom-up model generation methods. Using equality-based blocking techniques these can be used to decide logics representable in first-order logic that have the finite model property. Many common modal and description logics have these properties and can therefore be decided in this way. This paper integrates congruence closure, which is probably the most powerful and efficient way to realise reasoning with ground equations, into a modal tableau system with equality-based blocking. The system is described for an extension of modal logic K characterised by frames in which the accessibility relation is transitive and every world has a distinct immediate predecessor. We show the system is sound and complete, and discuss how various forms of blocking such as ancestor blocking can be realised in this setting. Though the investigation is focussed on a particular modal logic, the modal logic was chosen to show the most salient ideas and techniques for the results to be generalised to other tableau calculi and other logics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.