Abstract

Abstract A method based on isopycnal trajectory analysis is proposed to quantify the pathways from the subtropics to the Tropics. For a continuous stratified ocean a virtual streamfunction is defined, which can be used to characterize these pathways. This method is applied to the climatological dataset produced from a data-assimilated model. Analysis indicates that in each layer contours of the virtual streamfunction are a good approximation for streamlines, even if there is a cross-isopycnal mass flux. The zonal-integrated meridional transport per unit layer thickness through each pathway varies in proportion to 1/sinθ, where θ is latitude. The vertical-integrated total transport through pathways behaves similarly. Transport through pathways has a prominent decadal variability. Results suggest that in decadal time scales the interior pathway transport (IPT) anomaly may be mainly caused by the wind stress anomaly at low latitude. The western boundary pathway transport (WBPT) anomaly often has a sign opposite to the IPT anomaly, reflecting compensation between the IPT and the WBPT. However, more often than not the wind stress anomaly within tropical latitudes can also be used to explain the WBPT anomaly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call