Abstract

Abstract The ability to acquire rapid, dense and high quality 3D data has made terrestrial laser scanners (TLS) a desirable instrument for tasks demanding a high geometrical accuracy, such as geodetic deformation analyses. However, TLS measurements are influenced by systematic errors due to internal misalignments of the instrument. The resulting errors in the point cloud might exceed the magnitude of random errors. Hence, it is important to assure that the deformation analysis is not biased by these influences. In this study, we propose and evaluate several strategies for reducing the effect of TLS misalignments on deformation analyses. The strategies are based on the bundled in-situ self-calibration and on the exploitation of two-face measurements. The strategies are verified analyzing the deformation of the Onsala Space Observatory’s radio telescope’s main reflector. It is demonstrated that either two-face measurements as well as the in-situ calibration of the laser scanner in a bundle adjustment improve the results of deformation analysis. The best solution is gained by a combination of both strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.