Abstract

IL-2 regulates the immune response by interacting with different IL-2 receptor (IL-2R) subunits. High dose of IL-2 binds to IL-2Rβγc heterodimer, which induce various side effects while activating immune function. Disrupting IL-2 and IL-2R interactions can block IL-2 mediated immune response. Here, we used a computational approach to de novo design mini-binder proteins against IL-2R β chain (IL-2Rβ) to block IL-2 signaling. The hydrophobic region where IL-2 binds to IL-2Rβ was selected and the promising binding mode was broadly explored. Three mini-binders with amino acid numbers ranging from 55 to 65 were obtained and binder 1 showed the best effects in inhibiting CTLL-2 cells proliferation and STAT5 phosphorylation. Molecular dynamics simulation showed that the binding of binder 1 to IL-2Rβ was stable; the free energy of binder1/IL-2Rβ complex was lower, indicating that the affinity of binder 1 to IL-2Rβ was higher than that of IL-2. Free energy decomposition suggested that the ARG35 and ARG131 of IL-2Rβ might be the key to improve the affinity of binder. Our efforts provided new insights in developing of IL-2R blocker, offering a potential strategy for ameliorating the side effects of IL-2 treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call